Acta Crystallographica Section B

Structural

Science
ISSN 0108-7681

Jan B. van Mechelen,* Rene Peschar and Henk Schenk

University of Amsterdam, HIMS/FNWI/Kristallographie, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

Correspondence e-mail: janvm@science.uva.nl

Structures of mono-unsaturated triacylglycerols. I. The β_{1} polymorph

© 2006 International Union of Crystallography
structural models of the individual phases at the molecular level are required.

The ideal way to solve a crystal structure is using singlecrystal X-ray diffraction data. For TAGs, however, this route has not been very successful because of the difficulty of growing large, good quality single crystals. Only structures of trisaturated TAGs have been obtained (Vand \& Bell, 1951; Larsson, 1965; Jensen \& Mabis, 1966; Doyne \& Gordon, 1968; Gibon et al., 1984; Goto et al., 1992; Van Langevelde et al., 1999, 2000; Culot et al., 2000; Sato et al., 2001). An alternative technique nowadays is to solve a crystal structure from powder diffraction data using direct-space search techniques. Helped by the existence of homologous, single-crystal-based crystal structures as start search models, several crystal structures of trisaturated TAGs were solved from synchrotron powder data (Van Langevelde et al., 2000, 2001, 2002; Helmholdt et al., 2002). In recent years, the direct-space search techniques have been improved considerably and no longer require singlecrystal precursors. This progress is essential for TAGs of the type SatOSat' (Fig. 1), with Sat and Sat' saturated acyl chains and O a mono-unsaturated oleoyl chain ($\mathrm{C} 18: 1$) with the cis double bond at the glycerol sn -2 position, for which single crystals are rare. The structure of β_{2}-SOS ($\mathrm{S}=$ stearoyl, C18:0) was the first to be obtained in this way and to date it is still the sole published structural model of a mono-unsaturated TAG (Peschar et al., 2004).

In this paper we present the crystal structures of eight β_{1} phases, five of them being of pure TAGs: 1,3-dimyristoyl-2oleoylglycerol (β_{1}-MOM), 1,3-dipalmitoyl-2-oleoylglycerol (β_{1}-POP), 1,3-distearoyl-2-oleoylglycerol (β_{1}-SOS), 1-palmi-toyl-2-oleoyl-3-stearoylglycerol (β_{1}-POS) and 1-stearoyl-2-oleoyl-3-arachidoylglycerol (β_{1}-SOA). Furthermore, we obtained the β_{1} structures of three mixtures of TAGs, a cocrystallized ($1: 1 M$) mixture of SOS and POP [β_{1}-SOS/POP (1:1)] and the β-VI structures of cocoa butters from Bahia (β VI Bahia) and the Ivory Coast (β-VI Ivory Coast). The existence of the β_{1}-SOS/POP has not been reported before. The crystal structures have been solved from high-resolution synchrotron and laboratory powder diffraction data (HRPD). An analysis of the β_{1} structures provides an explanation of the relative lower melting point (T_{m}) of the asymmetric TAGs

Figure 1
Chemical structure diagram of SatOSat'-type TAGs. m and $n(=14,16,18$, 20) label the atom numbers, while $\mathrm{S} 1, \mathrm{~S} 3 g, \mathrm{~S} 3 m, \mathrm{O} 2 g$ and $\mathrm{O} 2 m$ label the saturated acyl chain and acyl-chain parts.
compared with the symmetric ones and points out that the β_{1} structures differ considerably from the published β_{2}-SOS polymorph.

2. Experimental methods

2.1. Samples, sample preparation and data collection

All pure TAG samples were obtained from Unilever Research Laboratorium (Vlaardingen, The Netherlands). The cocoa butter samples were obtained from ADM (Koog a/d Zaan, The Netherlands). Both the pure TAGs (Schlenk, 1965) and the cocoa butter samples (Takagi \& Ando, 1995) were racemic mixtures and have been checked for the presence of more than one polymorph on the in-house X'pertPro-alpha1 diffractometer (PANalytical, Almelo, The Netherlands) before carrying out the full data collection. All samples were put in glass capillaries that were spun during data collection. POP, SOS, POS and SOA were obtained as β_{1}-phase powders and required no further purification. With respect to POS and SOA, in the literature the highest-melting polymorph of POS is usually referred to as a β type, without further specification (Arishima et al., 1991; Yano et al., 1993). We have established that both these β polymorphs should be referred to as β_{1} because of the existence of a lower-melting β_{2} polymorph for both POS and SOA, which has not been previously reported in the literature. The crystal structures of β_{2}-POS and β_{2}-SOA will be reported in paper II (van Mechelen et al., 2006). $\beta_{1^{-}}$ MOM was recrystallized at 294 K from the melt by keeping it for several days at this temperature. A co-crystallized mixture of POP and SOS was prepared by melting a physical 1:1 molar mixture of POP and SOS and letting the melt recrystallize at 294 K . The β_{1} polymorph was purified by a tempering procedure (= cyclic heating and cooling) between 303 and 310 K . The cocoa butter samples were crystallized from the melt at 294 K . After several weeks the conversion of the Bahia sample into the β_{1} polymorph was completed. The Ivory Coast cocoa butter sample was tempered between 302 and 307 K to purify the β_{1} polymorph. All samples except the Ivory Coast cocoa butter have been measured at the high-resolution powder diffraction station BM01b at the ESRF (European Synchrotron Radiation Facility, Grenoble, France). The Ivory Coast sample was measured in-house on the X'pertPro-alpha1 diffractometer. This diffractometer was equipped with a sealed copper X-ray tube, 0.01 rad primary and secondary Soller slits and a hybrid monochromator that produces a parallel $\mathrm{Cu} K \alpha_{1}$ X-ray beam. The solid-state strip detector X'celerator (PANalytical) was used at its maximum active length of $2.17^{\circ} 2 \theta$. The data collection conditions for each of the samples are given in Tables 1 and 2. ${ }^{\mathbf{1}}$ The continuous scans were binned with step sizes of $0.005^{\circ} 2 \theta$ for the BM01b data and $0.008^{\circ} 2 \theta$ for the X'pert-Pro alpha1 data, respectively. Some of the samples appeared to have a small impurity line of unknown origin between the first and the second reflection.

[^0]Table 1
Experimental and structural details of structure refinement of $\beta 1$ structures of symmetric molecules.

	β_{1}-MOM	β_{1}-POP	β_{1}-SOS-POP	β_{1}-SOS
Crystal data				
Chemical formula	$\mathrm{C}_{49} \mathrm{H}_{92} \mathrm{O}_{6}$	$\mathrm{C}_{53} \mathrm{H}_{100} \mathrm{O}_{6}$	$\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{O}_{6}$	$\mathrm{C}_{57} \mathrm{H}_{108} \mathrm{O}_{6}$
M_{r}	777.27	833.38	865.46	889.48
Cell setting, space group	Monoclinic, $P 2_{1} / n$			
Temperature (K)	295	295	295	295
$a, b, c(\AA)$	5.453 (1), 112.75 (1), 8.195 (1)	5.450 (1), 121.32 (1), 8.209 (1)	5.447 (1), 125.97 (1), 8.212 (1)	5.442 (1), 129.90 (1), 8.184 (2)
$\beta{ }^{\circ}{ }^{\circ}$)	88.84 (1)	88.85 (1)	88.85 (1)	88.71 (1)
$V\left(\mathrm{~A}^{3}\right)$	5038.0 (2)	5426.6 (5)	5633.7 (3)	5784.2 (5)
Z	4	4	4	4
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.025	1.020	1.020	1.021
Radiation type	Synchrotron	Synchrotron	Synchrotron	Synchrotron
Specimen form, colour	Cylinder (particle morphology: solid fat), white	Cylinder (particle morphology: powder), white	Cylinder (particle morphology: solid fat), white	Cylinder (particle morphology: powder), white
Specimen size (mm)	$2.5 \times 1 \times 1$	$20 \times 1.5 \times 1.5$	$4 \times 1 \times 1$	$20 \times 1 \times 1$
Specimen preparation temperature (K)	295	295	295	302
Data collection				
Diffractometer	ESRF BM01b	ESRF BM01b	ESRF BM01b	ESRF BM01b
$2 \theta\left({ }^{\circ}\right)$	$2 \theta_{\text {min }}=0.53,2 \theta_{\text {max }}=40.5$	$2 \theta_{\text {min }}=0.34,2 \theta_{\text {max }}=30.0$	$2 \theta_{\text {min }}=0.34,2 \theta_{\text {max }}=40.5$	$2 \theta_{\text {min }}=0.53,2 \theta_{\text {max }}=30.0$
Refinement				
R factors and goodness-of-fit	$\begin{aligned} & R_{p}=0.068, R_{\mathrm{wp}}=0.098, R_{\exp }= \\ & \quad 0.014, S=7.82 \end{aligned}$	$\begin{aligned} & R_{p}=0.064, R_{\mathrm{wp}}=0.086, R_{\mathrm{exp}}= \\ & \quad 0.015, S=6.02 \end{aligned}$	$\begin{aligned} & R_{p}=0.051, R_{\mathrm{wp}}=0.063, R_{\exp }= \\ & \quad 0.023, S=2.91 \end{aligned}$	$\begin{aligned} & R_{p}=0.055, R_{\mathrm{wp}}=0.068, R_{\exp }= \\ & \quad 0.020, S=3.66 \end{aligned}$
$\lambda(\AA)$	0.79936	0.79889	0.79889	0.75003
Excluded region(s)	No	No	0.85-0.965	0.738-0.897
No. of parameters	489	516	547	550
H -atom treatment $(\Delta / \sigma)_{\max }$	Constrained to parent site 0.05	Constrained to parent site 0.05	Constrained to parent site 0.26	Constrained to parent site 0.35

This peak was excluded from the refinement (see Tables 1 and 2). Melting points were determined with a DSC600 (Linkam Scientific Instruments Ltd, Tadworth, UK) using a heating rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$. The melting points given in Tables 1 and 2 are the temperatures at which the melting peak is at a maximum. The DSC traces showed no evidence for the coexistence of more than one phase.

2.2. Indexing

A major problem to overcome before the actual structure determination of a TAG can be started is the indexing of its powder pattern. All TAG unit cells known to date have (at least) one small and one (very) long unit-cell axis. If the ratio of the longest-to-shortest unit-cell axis exceeds ~ 10, the lower-angle part of the diffraction pattern becomes seriously dominated by a single reciprocal lattice zone. Also, the reflection density in the higher-angle part of the diffraction patterns causes serious peak-overlap problems and makes it difficult to obtain convincing indexing results. Therefore, it is no surprise that the generally used auto-indexing programs such as ITO, TREOR and DICVOL cannot handle this problem. We used a different strategy and indexed the synchrotron powder patterns of $\beta_{1}-\mathrm{SOS}, \beta_{1}-\mathrm{POP}, \beta_{1}$ - MOM, β_{1} POS and β_{1}-SOA with the indexing routine LSQDETC that runs in conjunction with the program suite POWSIM (Peschar et al., 2002). LSQDETC is a brute-force program that searches systematically through the allowed solution space for cells. The solution space is defined by adjustable unit-cell parameter
ranges and based on prior knowledge about the expected unitcell volume windows and density of the material. To check the correctness of the indexing of the five patterns, the program Chekcell (Laugier \& Bochu, 2001) was used. This latter program was also used iteratively to index the three patterns of TAG mixtures, β_{1}-SOS/POP (1:1), β-VI Bahia and β-VI Ivory Coast. Starting with the unit cell of β_{1}-SOS, the longest axis was modified manually until the calculated low-angle reflections matched the observed positions of the diffraction maxima. After coupling the positions of the main peaks at higher angles to the proper peak positions of the current cell, the cell was refined, after which the refined cell was taken as the new current cell. This procedure was repeated until a cell was found that explained all the diffraction maxima in the pattern.

2.3. Model building and analysis

In accordance with the published structure of β_{2}-SOS (Peschar et al., 2004), a β_{1}-SOS starting model was constructed, consisting of two parallel stearoyl chains (S1, S3) and an oleoyl chain (O2) pointing in the opposite direction (Fig. 1). The oleoyl chain was split into two saturated partial chains, $\mathrm{O} 2 g$ (bonded to the glycerol) and $\mathrm{O} 2 m$ (methyl side), that are connected by a double bond at C atoms C9b and $\mathrm{C} 10 b$. During the refinement stage, the S3 chain was also split in two parts: $\mathrm{S} 3 g$ from $\mathrm{C} 2-\mathrm{C} 2 c$, from the glycerol group to the gauche bend and $\mathrm{S} 3 m$ from $\mathrm{C} 2 c$ to the end of the acyl chain. In relation to the models, the following geometrical parameters

Table 2
Experimental and structural details of structure refinement of β_{1}-structures of asymmetric molecules and β-VI cocoa butter.

	β_{1}-POS	β_{1}-SOA	β-VI Bahia	β-VI Ivory Coast
Crystal data				
Chemical formula	$\mathrm{C}_{55} \mathrm{H}_{104} \mathrm{O}_{6}$	$\mathrm{C}_{59} \mathrm{H}_{112} \mathrm{O}_{3}$	$\mathrm{C}_{54.96} \mathrm{H}_{108} \mathrm{O}_{6}$	$\mathrm{C}_{55} \mathrm{H}_{108} \mathrm{O}_{6}$
M_{r}	861.43	917.54	853.45	865.46
Cell setting, space group	Monoclinic, $P 2_{1} / n$			
Temperature (K)	295	294	295	295
$a, b, c(\AA)$	5.445 (1), 125.98 (2), 8.195 (1)	5.439 (1), 134.65 (2), 8.200 (1)	5.444 (1), 127.40 (2), 8.195 (1)	5.448 (1), 128.71 (1), 8.201 (2)
$\beta\left({ }^{\circ}\right.$)	88.79 (1)	88.73 (1)	88.71 (2)	88.61 (1)
$V\left(\AA^{3}\right)$	5620.3 (3)	6003.7 (4)	5682.8 (4)	5748.5 (1)
Z	4	4	4	4
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.018	1.015	0.997	1.000
Radiation type	Synchrotron	Synchrotron	Synchrotron	$\mathrm{Cu} K \alpha_{1}$
Specimen form, colour	Cylinder (particle morphology: powder), white	Cylinder (particle morphology: powder), white	Cylinder (particle morphology: solid fat), yellowish white	Cylinder (particle morphology: solid fat), yellowish white
Specimen size (mm)	$5 \times 1.5 \times 1.5$	$5 \times 1.5 \times 1.5$	$20 \times 1.5 \times 1.5$	$12 \times 1 \times 1$
Specimen preparation temperature (K)	295	295	294	292
Data collection				
Diffractometer	ESRF BM01b	ESRF BM01b	ESRF BM01b	X'pertPro-alpha1
Data collection method	Specimen mounting: glass capillary; mode: transmission; scan method: continuous	Specimen mounting: glass capillary; mode: transmission; scan method: continuous	Specimen mounting: glass capillary; mode: transmission; scan method: continuous	Specimen mounting: glass capillary; mode: transmission; scan method: continuous
$2 \theta\left({ }^{\circ}\right)$	$2 \theta_{\text {min }}=0.53,2 \theta_{\text {max }}=48.2$	$2 \theta_{\text {min }}=0.515,2 \theta_{\text {max }}=53.3$	$2 \theta_{\text {min }}=0.53,2 \theta_{\text {max }}=43.0$	$2 \theta_{\text {min }}=0.79,2 \theta_{\text {max }}=50.0$
Refinement				
R factors and goodness-of-fit	$\begin{aligned} & R_{p}=0.062, R_{\mathrm{wp}}=0.071, R_{\mathrm{exp}}= \\ & \quad 0.028, S=2.64 \end{aligned}$	$\begin{aligned} & R_{p}=0.070, R_{\mathrm{wp}}=0.088, R_{\mathrm{exp}}= \\ & \quad 0.028, S=3.45 \end{aligned}$	$\begin{aligned} & R_{p}=0.046, R_{\mathrm{wp}}=0.059, R_{\mathrm{exp}}= \\ & \quad 0.015, S=4.22 \end{aligned}$	$\begin{aligned} & R_{p}=0.043, R_{\mathrm{wp}}=0.059, R_{\exp }= \\ & 0.012, S=5.09 \end{aligned}$
$\lambda(\AA)$	0.750033	0.85019	0.79936	1.54059
Excluded region(s)	No	0.738-0.897	0.83-1.125	No
No. of parameters	532	551	554	552
H -atom treatment	Constrained to parent site 0.43	Constrained to parent site 0.10	Constrained to parent site 0.72	Constrained to parent site 5.35

are used: the chain direction is defined as the least-squares line through a set of atoms, the chain plane is the least-squares plane through a set of C atoms and the molecule plane is defined as the least-squares plane through the directions of the chains $\mathrm{S} 1, \mathrm{~S} 3 g, \mathrm{~S} 3 m, \mathrm{O} 2 g$ and $\mathrm{O} 2 m$.

The structure of β_{1}-SOS has been solved with the parallel tempering mode of the program FOX (Favre-Nicolin \& Černý, 2002), using a Z-matrix description. In the initial stage of the structure solution process only the translation and rotation of the rigid starting model was allowed. Later, the torsion angles at the glycerol and at the $\mathrm{C} 9 b=\mathrm{C} 10 b$ double bond were released one by one, starting at the latter. The saturated (parts of the) acyl chains were treated as rigid bodies. H atoms were attached only in the final stage of the structure solution process.

The final β_{1}-SOS model found by $F O X$ was used as the starting model for the other structures. Since MOM and POP are symmetric TAGs, just like SOS, the Z matrix of the latter can be edited and the S1 and S3 chain lengths can be shortened to obtain search models of MOM and POP. For each asymmetric TAG (SOA and POS), two models were built and refined, one having S1 and the other having S3 as the longest chain.

Cocoa butter is a mixture of fats with POP, SOS and POS as the main components $(\sim 75 \%)$. When these TAGs co-crystallize, an average crystal structure results with partially
occupied positions of C atoms at the end of the S 1 and S 3 chains. Analogous to the published β_{2} structure, the β_{1}-SOS structure was used as the starting model for the average cocoa butter β_{1} structure. The occupancy of the last two C atoms of the S1 and S3 chains was fixed at 0.5 . This is an estimated value as no exact composition of the cocoa butter sample is known and it is not known what fraction of the main components cocrystallizes.

The co-crystallized mixture of SOS and POP (1:1M) was also assumed to form an average crystal structure with POP and SOS distributed 1:1 over the molecule positions. The same starting model was used as for cocoa butter, but now with a calculated occupancy of 0.5 for the last two C atoms of the S1 and S3 chains.

The structures were refined with GSAS (Larson \& Von Dreele, 1987) using a Chebyshev polynomial to fit the background and profile number 4 to describe the peak profiles. With this function low-angle peak asymmetry and $H K L$ dependent broadening could be modelled successfully. Soft restraints were applied to bonding angles and distances of all atoms, including the H atoms, to stabilize the refinement. The restraint values are mean values taken from the Cambridge Structural Database (Allen, 2002). The weight of the restraints applied to H atoms was taken to be half the weight applied to the non-H atoms. Soft planar restraints were applied to the C atoms of the acyl chains $\mathrm{S} 1, \mathrm{O} 2 g, \mathrm{O} 2 m$ and $\mathrm{S} 3 m$, to the three
$\mathrm{C}=\mathrm{O}$ groups including the C atoms connected to them and to the $\mathrm{C} 8 b-\mathrm{C} 9 b=\mathrm{C} 10 b-\mathrm{C} 11 b$ group. The weight of the restraints in the refinement process was reduced, but its level was kept high enough to ensure a stable refinement. In the final stage of the refinement the contribution of the restraints to the total of the χ^{2} residue parameter was $c a 10 \%$. The

Figure 2
Overview of β_{1}-diffraction patterns with 2θ scale converted to $\mathrm{Cu} K \alpha_{1}$ radiation.

Figure 3
Part of the higher-angle area of Fig. 2 showing the differences between the patterns. $(1, k,-1)$ peaks are labeled (k) and $(0, k, 2)$ peaks are labeled underscore k.
applied isothermal displacement parameters $U_{\text {iso }}$ were 0.025 for non- H atoms and 0.05 for H atoms. Attempts to apply a coupled refinement of $U_{\text {iso }}$ for all atoms did not result in a significant improvement of R values, so the original $U_{\text {iso }}$ values were retained. The preferred orientation (PO) was corrected for by the March-Dollase function (March, 1932; Dollase, 1986) for $\beta_{1}-\mathrm{SOA}$ (axis [010], ratio $=$ 1.06, correction range: minimum $=$ 0.85 , maximum $=1.08$). For the other samples no significant PO was found. Plots of observed, calculated and difference intensities for all refinements are available in the supplementary material.

3. Results and discussion

3.1. Data collection

Fig. 2 gives an overview of the diffraction patterns of all samples with the 2θ values being converted to the same scale $\left(2 \theta, \mathrm{Cu} K \alpha_{1}\right.$ radiation). The low-angle parts of the diffraction patterns $\left(2 \theta<10^{\circ}\right)$ are dominated by ($0 k 0$) reflections and are quite similar, except for the peak positions. The fingerprint areas ($2 \theta>21^{\circ}$) show larger differences (Fig. 3). The patterns of the two asymmetric molecules, the two cocoa butter samples and β_{1}-SOS/POP (1:1) have similar characteristics. The other three patterns of the symmetric molecules differ from each other and from the other five. The diffraction patterns suggest a similarity between the packing of the β_{1}-SOS/POP (1:1) and the asymmetric TAGs.

3.2. Indexing, structure determination and refinement of the β_{1} polymorphs

All eight patterns could be indexed on similar monoclinic cells (Tables 1 and 2) with $Z=4$. The choice of space group, however, was not obvious because of the peak overlap. Assuming a single molecule in the asymmetric unit, the spacegroup selection was limited to the centrosymmetric space groups with a fourfold general position. Systematic extinctions excluded the noncentrosymmetric space groups. From the centrosymmetric space groups six
possibilities had to be tested: $P 2 / m, P 2_{1} / m, P 2 / c, P 2_{1} / c, P 2_{1} / a$ and $P 2_{1} / n$. This implied six structure determinations to be carried out in parallel. As this problem was the same for all the β_{1} structures of this study, one of the patterns (β_{1}-SOS) was chosen to find the most probable space group. In the first three space groups listed above no feasible structure solution could be found. The choice between the three settings of space group $14\left(P 2_{1} / c, P 2_{1} / a, P 2_{1} / n\right)$ was less obvious. At first glance all the packings looked feasible, but a closer look revealed an inferior packing of the O 2 chain in $P 2_{1} / a$ and $P 2_{1} / c$ compared with a parallel side-by-side packing of the O 2 chains in $P 2_{1} / n$. Since the R values also appeared to be lower for $P 2_{1} / n$ in the structure solution process, this space group was taken as the most probable one and this choice turned out to also hold for the other seven patterns, as became clear during the refinement process.

During the structure solution process, it appeared that the precise orientation of the direction of the $\mathrm{O} 2 m$ chain, compared with the direction of the S 1 , the S 3 and the $\mathrm{O} 2 g$ chains, led to two types of TAG packing: a 'flat' conformation and a 'rotated' conformation. In the former the direction of the $\mathrm{O} 2 m$ chain is in the same plane as the direction of the other three chains, whilst in the 'rotated' conformation the direction of the $\mathrm{O} 2 m$ is rotated out of this plane (Fig. 4). The different conformations imply different interconnections of the columns of electron density of the S1 and S3 chains to the glycerol (see supplementary data). It was not possible with $F O X$ to discriminate between the two conformations. It was only during structure refinement in GSAS, with $H K L$ dependent line-broadening properly taken into account, that it became clear that the refinement of the flat conformation converged better.

Although in both the 'flat' and the 'rotated' conformation the zigzag acyl-chain planes $\mathrm{S} 1, \mathrm{~S} 3$ and $\mathrm{O} 2 g$ are parallel, this parallelism is poorly defined as additional rigid-body refinement experiments pointed out. The $\mathrm{S} 3 m$ chain plane and the S1 chain plane were defined as rigid bodies in GSAS and rotated relative to each other using the (common) rigid-body axis direction as the rotation axis. A rotation of 10° affected

Figure 4
TAG with flat (left) and rotated (right) conformation of the O2 chain.
the R value somewhat, but if this forced rotation was kept fixed during a subsequent structure refinement, its effect was almost completely compensated for by small changes in the structure. When the chains were rotated over 180° in this way in steps of 10° with subsequent refinement, the change in the R value was less than 1% and the lowest R value did not always correspond to the 'flat' conformation starting point of the rotations. Apparently, this minimization involves a shallow R value valley and with some intervention, a lower point in the valley may be found. Peak overlap facilitates the redistribution of intensities within the envelope of the diffraction pattern after a forced rotation and limits the precision of, for example, the rotation angle of the zigzag planes around their length axis.

For the asymmetric TAGs, POS and SOA, two models have been refined to find out whether S 1 or S 3 is the longer saturated chain. S3 appeared to be the longer chain as this resulted in the lowest R value.

The refinement of β_{1}-POS revealed that two different conformations are possible at the glycerol moiety with different $\mathrm{S} 3 g$ chain packings. In the β_{1}-POS model found by $F O X$ (Fig. 5, bottom) and initially refined with GSAS, the S3g chain seems to be distorted and suffers from a $\mathrm{C} 2-\mathrm{C} 2 c$ distance which is too short ($3.29 \AA$). In an attempt to improve the conformation, both the $\mathrm{S} 3 m$ chain and the $\mathrm{S} 1-\mathrm{O} 2$ combination have been rotated around the length axis by 180° and the dihedral angles around the double bond in the middle of the O 2 chain were modified to make the $\mathrm{O} 2 m$ chain point towards the original direction. After refinement of this new β_{1-} POS model (Fig. 5 top), the distance between C 2 and $\mathrm{C} 2 c$ increased to $4.66 \AA$ and the $\mathrm{S} 3 g$ chain remained almost flat. The R values of both β_{1}-POS models did not differ significantly. The modified conformation has also been applied to

Figure 5
The β_{1}-POS molecule conformation initially found by FOX (bottom) and the modified β_{1}-POS molecule conformation (top).
the other β_{1} structures with the same effect: an almost flat S3g chain and final R values that are equal to or slightly lower than those of the original models. Although the refinement is not decisive with respect to the correctness of the models, the flat conformation of the $\mathrm{S} 3 g$ chain is in line with the published structures of β-stable trisaturated TAGs (Jensen \& Mabis, 1966; Gibon et al., 1984; Van Langevelde et al., 1999, 2001, 2002; Culot et al., 2000; Helmholdt et al., 2002) and the β_{1} molecule conformation as proposed by De Jong et al. (1991).

The assumed fractional occupancies of the two end atoms of the S1 and S3 chains in the SOS:POP (1:1) mixture and the cocoa butters did not change significantly, as can be seen in the chemical formula of β-VI Bahia in Table 2, although this does not necessarily justify these occupancies as being correct as additional refinement experiments pointed out. A forced change of the occupancies with 0.05 mainly affects the intensities of the reflections (020) and (040), and when the structure is subsequently refined, while keeping the changed occupancies fixed, the changes are compensated for by small changes in the structure and virtually the same R value is obtained. Thus, the seemingly stable refinement of the occupancies of the two end atoms of the S1 and S3 chains is stable only because there is no driving force for a change. This implies that one should allow for a considerable error window on the partial occupancies.

For the SOS:POP (1:1) mixture two additional POS-like models were constructed and refined because SOS:POP (1:1) and POS have the same P:S ratio of 1 and their T_{m} and b-axis

Figure 6
Conformation of β_{1}-SOA and β_{1}-SOS molecules.
lengths are quite similar (Table 1). The two asymmetric POSlike models were constructed from the final structure of the symmetric SOS model (the two last C atoms of S1 and S3 having an occupancy of 0.5) in the following way:
(i) model A via a change of the fractional occupancies of the S1 end atoms to 0 and those of S3 to 1,
(ii) model B by changing the fractional occupancies of the S1 end atoms to 1 and those of S3 to 0.
The final R_{p} for the symmetric model was $0.0505,0.0544$ for the asymmetric model A and 0.0579 for the asymmetric model B. These R_{p} values suggest the symmetric model to be the most likely one, although an asymmetric model can also be argued for, as discussed below in $\S 3.5$.

3.3. Influence of data resolution

The above-sketched problems to find the most probable conformation of the molecule can be attributed mainly to the limited crystallinity of the materials and their anomalous packing habit. The small and anisotropic crystallite sizes and the size of the unit cell cause $h k l$-dependent peak broadening and severe overlap in the fingerprint area and, even when using high-resolution synchrotron radiation, the materials do not diffract significantly beyond the fingerprint area (d spacings $3-6 \AA$). As a result atomic resolution was not obtained in any case. In most cases the data were collected up to atomic resolution and it may be argued that these data should be included in the refinement, in spite of lacking a significant diffraction signal. After having carried out several refinement tests, the results refute this hypothesis. For example, β_{1}-POS was refined initially with diffraction data from 0.53 to $20^{\circ} 2 \theta$. The angle range was later extended by 10° to bring it in line with those of the other samples and to test the influence of these higher-angle data that lack significant diffraction signal. The extension hardly affected the refined crystal structure and the sole effect was a reduction of the R values: R_{p} from 0.0668 to $0.0616, R_{\text {wp }}$ from 0.0821 to 0.0706 and GOF from 2.95 to 2.64%. Thus, the inclusion of high-angle diffraction data without any significant peak information does not necessarily have a positive influence on the structure refinement, as may be suggested by the lower R values.

3.4. The $\boldsymbol{\beta}_{1}$ polymorph crystal structure models

Fig. 6 shows the conformation of β_{1}-SOS and β_{1}-SOA, which are representative of symmetric and asymmetric β_{1} -SatOSat'-type TAGs, respectively. The molecules have the expected tuning fork conformation (Larsson, 1972; De Jong et al., 1991; Sato \& Ueno, 2001). The least-squares lines through the different chains are approximately in the same plane, making the molecular conformation flat. The directions of the S 1 and $\mathrm{O} 2 g$ chains are in line with each other. The orientations of the planes of all the chains are perpendicular to the plane of the molecule. The conformation of the symmetric and asymmetric molecules is the same and agrees well with the model of β_{1}-SOS proposed in the literature (De Jong et al. 1991; Sato \& Ueno, 2001). In going from POP to POS or from SOS to SOA
the elongation of the S3 chain is realised by just adding two C atoms, resulting in a slightly longer b axis.

When viewed along the two short axes, the packing of the TAGs consists of a sequence of six acyl-chain layers or, more precisely, of two sets of tri-acyl chain layers, from now on referred to as three-packs, which are symmetry related by inversion centres. Each three-pack consists of an unsaturated zone, in which O 2 chains are packed parallel and side-by-side, i.e. sandwiched by two saturated zones (Fig. 7). Interestingly, Filer et al. (1946) already proposed the existence of a six-acyl chain packing with saturated and unsaturated chain zones and De Jong et al. (1991) even argued $P 2_{1} / a$ to be a good candidate space group. The unsaturated bond geometry is of the type 'skew-cis-skew'. The $\mathrm{C} 9 b=\mathrm{C} 10 b$ double bonds of the O2 chains are aligned at distances of $4.5-5.0 \AA$, which are too large for an olefinic $\pi-\pi$ interaction. The acyl-chain layers are parallel to the a axis, i.e. perpendicular to the plane of the drawing in Figs. 7(a) and (b), and largely parallel to the lattice plane (0k2) (Fig. 8) that corresponds to the strongest peak in the interval 23.9-24.5 2θ (Fig. 3). The k index of this lattice plane varies with the length of the b axis. In a view parallel to (10 $\overline{1})$ (Fig. $7 c$), the acyl zigzags are largely parallel to the $(1 k \overline{1})$ plane, visible as the strongest peak in the interval 22.9-23.5 2θ (Fig. 3) with the k index again depending on the length of the b axis. A view parallel to the (101) plane (Fig. 7d) emphasizes that the molecule planes are largely parallel to this lattice
(a)

(b)

(c)
(d)

Figure 7
Views down the a axis of (a) β_{1}-POS and (b) β_{1}-SOS. Views parallel to planes (101) and (101) of β_{1}-SOS (c) and (d), respectively.
plane. The (111) plane (not shown) is slightly tilted relative to the (101) plane and intersects the molecule planes. The (111) and (101) planes greatly overlap and form the strongest fingerprint diffraction maximum (Fig. 2, 19.4 $2 \theta, \mathrm{Cu} K \alpha_{1}$). The intensity of this peak is dominated by the (111) plane.

With respect to the subcell and using the notation of Abrahamsson et al. (1978) the S1 and S3 chains together form a $M_{\|}$subcell, while the O 2 chains form a (different) $M_{\|}$subcell (Fig. 8). A parallel chain packing has also been inferred from FT-IR measurements (Yano et al., 1993), but monoclinic subcells contradict the usual assumptions, $T_{\|}$for the S chains and $\mathrm{T}_{\| \mid}$or $\mathrm{O}_{\mid}^{\prime}$ for the O 2 chains (Larsson, 1972; Yano et al., 1993).

Molecules of adjacent layers, and thus also the S1 and S3 chain planes of adjacent layers, are not aligned. The methylend plane is not flat but terrace-like (Figs. $7 a$ and b). The terraces shown are not on the same level, as is suggested by the projection, but shifted relative to each other perpendicular to the plane of the molecules. The terraces in the symmetric MOM, POP and SOS are formed by the S1 and S3 chains of the same molecule, whereas in POS and SOA the terraces are formed by chains of different molecules. This difference in terrace is a consequence of the longer S3 chain in the asymmetric molecules. The co-crystallized samples have the same terrace position as the symmetric molecules since their conformation is based on the SOS model. The shortest chain

Figure 8
The M_{\mid}subcells formed by saturated chains and by the oleoyl chains of β_{1-} POP with lattice plane markers.

Figure 9
Melting point (T_{m}) in relation to the long spacing. T_{m} (asymmetric) is 4 K below T_{m} (symmetric).
distances between the three packs at the methyl-end plane range from 3.8 to $5.1 \AA$ for the samples in this study. In these values the partial occupancy of the end atoms of the S1 and S3 chains has been taken into account by omitting two C atoms at one side of the distance. No clear relation seems to exist between chain lengths and molecular (a-) symmetry.

In view of the resolution of the data, a detailed analysis of the glycerol torsion angles has not been carried out.

3.5. The relation between melting point and methyl-end plane packing

The melting point T_{m} is a function of the chain length, but also of the interaction between methyl groups at the methylend plane. The melting points of the symmetric MOM, POP and SOS show a linear relation (Fig. 9). As the methyl-end planes are equal, this relation reflects the difference in chain length. It is likely that the co-crystallized cocoa butter samples have a partially occupied methyl-end plane, because of the presence of TAGs with different saturated acyl-chain lengths. The partial occupation results in a T_{m} below the line through the symmetric $T_{\mathrm{m}} \mathrm{s}$. The $T_{\mathrm{m}} \mathrm{s}$ of the asymmetric POS and SOA are also below this line, but their crystal structures provide no evidence for any partial occupation at the methyl-end planes and they differ from the symmetric TAGs only in the position of the terraces at the methyl-end planes. De Jong et al. (1991) calculated lattice energies for single layers of symmetric and asymmetric monounsaturated TAGs and concluded that the addition of two C atoms essentially does not change the terrace structure of the methyl interface, but that for entropy reasons the T_{m} level is 4 K beneath that of the symmetric samples. Arishima et al. (1991) suggested the lowered T_{m} for POS to be due to racemic problems. Since all compounds in our study are racemic mixtures, it seems unlikely that only the asymmetric ones would show such problems. Schlenk (1965) crystallized racemic POS as well as the antipodes and found the former to yield β crystals, while the pure enantiomers crystallize in the β^{\prime} form but not in the β form. A comparison of the structures provides an alternative explanation. The difference in the length of the b axis between MOM and POP is $8.61 \AA$ and between POP and SOS $8.59 \AA$, so an extension of both the saturated chains with two C atoms increases the b axis on average $8.6 \AA$. Between the asymmetric POS and SOA and the nearest symmetric molecules there is only one saturated chain that differs by two C atoms in length and a b axis difference of $4.3 \AA$ would have been in line with the behaviour of the symmetric molecules. The real difference between the b axis of POP and POS is $4.66 \AA$ and between SOS and SOA $4.75 \AA$. Thus, the b axis of the asymmetric molecules is larger than may be expected based on the behaviour of the symmetric molecules. The SOS:POP (1:1) sample contains two different symmetric molecules, but behaves as the asymmetric POS with an equal average chain length, equal b axis and an almost equal T_{m}. The larger b axis suggests a weaker interaction at the methyl interface and a corresponding lower melting point. Owing to this similarity, an asymmetric model for SOS:POP (1:1) seems more likely than a symmetric one, in
spite of the slightly lower R_{p} value of the latter. If this hypothesis is correct, the difference in terrace (location) seems to be a key factor in explaining the lower melting points of the asymmetric compounds. Unfortunately, the resolution of all data is not sufficient to draw this conclusion.

The Ivory Coast sample was more difficult to crystallize in the β_{1} form than the Bahia sample, probably because of their compositional difference, the most prominent being Bahia's 10% higher content of TAGs with 2 oleic chains (Van Malssen et al., 1996). However, no significant difference could be established between the β_{1} crystal structures of the two cocoa butter samples within the resolution of the HRPD data. The small differences in T_{m} and long spacing (b axis) also suggest that the average β_{1} crystal structures differ only slightly in composition.

4. Conclusion

The β_{1} polymorphs of Sat-O-Sat' type TAGs and the equivalent β-VI form of cocoa butter point out that high-resolution powder data can be sufficient for a successful crystal structure determination, even if the data are not of atomic resolution. Based on the structure models and data, we were able to answer long-standing questions about the precise packing of the β_{1} polymorphs, to interpret the characteristic fingerprint area in terms of the type of reflections involved and to rationalize the difference in melting points between symmetric and asymmetric TAGs.

Finally, the β_{1} models led us to re-analyze the published β_{2} model and the data it is based upon, the results of which will be presented in the sequel to this paper (van Mechelen et al., 2006).

The authors thank ADM Cocoa NL for providing the cocoa butter samples and Unilever Research Vlaardingen and Unilever Research Colworth for the pure triglycerides. The authors acknowledge the ESRF (Grenoble, France) for providing the facilities to perform the synchrotron diffraction experiments and they thank the staff of the Swiss-Norwegian CRG beamline BM01b, D. Testemale, H. Emerich and W. van Beek, for their valuable help during the experimental sessions. The authors also thank K. Goubitz, E. Sonneveld, R. B. Helmholdt, M. M. Pop and D. J. A. De Ridder for their help in data collection data during various experimental sessions at BM01b. Dr V. Favre-Nicolin is gratefully acknowledged for implementing the requested modifications in $F O X$. The investigations have been supported by the Netherlands Foundation for Chemical Research (NWO/CW) with financial aid from the Netherlands Technology Foundation (STW; project 790.35.405). The members of the User Committee of this project are thanked for stimulating discussions and continuous interest.

References

Abrahamsson, S., Dahlén, B., Löfgren, H. \& Pascher, I. (1978). Prog. Chem. Fats Other Lipids, 16, 125-143.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Arishima, T., Sagi, N., Mori, H. \& Sato, K. (1991). J. Am. Oil Chem. Soc. 68, 710-715.
Beckett, S. T. (1999). Editor. Industrial Chocolate Manufacture and Use. Oxford: Blackwell Science.
Culot, C., Norberg, B., Evrard, G. \& Durant, F. (2000). Acta Cryst. B56, 317-321.
De Jong, S., Van Soest, T. C. \& Van Schaick, M. A. (1991). J. Am. Oil Chem. Soc. 68, 371-378.
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
Doyne, Th. H. \& Gordon, J. T. (1968). J. Am. Oil Chem. Soc. 45, 333334.

Favre-Nicolin, V. \& Černý, R. (2002). J. Appl. Cryst. 35, 734-743.
Filer, L. J. Jr, Sidhu, S. S., Daubert, B. F. \& Longenecker, H. E. (1946). J. Am. Chem. Soc. 68, 167-171.

Gibon, V., Blanpain, P., Norberg, B. \& Durant, F. (1984). Bull. Soc. Chim. Belg. 93, 27-34.
Goto, M., Kodali, D. R., Small, D. M., Honda, K., Kozawa, K. \& Uchida, T. (1992). Proc. Natl. Acad. Sci. USA, 89, 8083-8086.
Helmholdt, R. B., Peschar, R. \& Schenk, H. (2002). Acta Cryst. B58, 134-139.
Jensen, L. H. \& Mabis, A. J. (1966). Acta Cryst. 21, 770781.

Larson, A. C. \& Von Dreele, R. B. (1987). GSAS. Report No. LA-UR-86-748. Los Alamos National Laboratory, New Mexico, USA.
Larsson, K. (1965). Arkiv Kemi, 23, 1-15.
Larsson, K. (1972). Fette Seifen Anstrichm. 74, 136-142.
Laugier, J. \& Bochu, B. (2001). Chekcell, http://www.inpg.fr/LMPG.
March, A. (1932). Z. Kristallogr. 81, 285-297.
Mechelen, J. B. van, Peschar, R. \& Schenk, H. (2006). Acta Cryst. B62 1131-1138.

Peschar, R., Etz, A., Jansen, J. \& Schenk, H. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker \& Ch. Baerlocher, ch. 10. Oxford University Press.
Peschar, R., Pop, M. M., De Ridder, D. J. A., Van Mechelen, J. B., Driessen, R. A. J. \& Schenk, H. (2004). J. Phys. Chem. B, 108, 15450-15453.
Sato, K., Goto, M., Yano, J., Honda, K., Kodali, D. R. \& Small, D. M. (2001). J. Lipid Res. 42, 338-345.

Sato, K. \& Ueno, S. (2001). Crystallization Processes in Fats and Lipid Systems, edited by N. Garti \& K. Sato, ch. 5. New York: Marcel Dekker.
Schlenk, W. Jr (1965). J. Am. Oil. Chem. Soc. 42, 945-957.
Takagi, T. \& Ando, Y. (1995). J. Am. Oil Chem. Soc. 72, 1203-1206.
Van Langevelde, A., Van Malssen, K., Hollander, F., Peschar, R. \& Schenk, H. (1999). Acta Cryst. B55, 114-122.
Van Langevelde, A. J., Van Malssen, K. F., Driessen, R., Goubitz, K., Hollander, F. F. A., Peschar, R., Zwart, P. \& Schenk, H. (2000). Acta Cryst. B56, 1103-1111.
Van Langevelde, A., Peschar, R. \& Schenk, H. (2001). Acta Cryst. B57, 372-377.
Van Langevelde, A., Peschar, R. \& Schenk, H. (2002). Chem. Mater. 13, 1089-1094.
Van Malssen, K. F., Peschar, R. \& Schenk, H. (1996). J. Am. Oil. Chem. Soc. 73, 1217-1223.
Van Malssen, K. F., Van Langevelde, A. J., Peschar, R. \& Schenk, H. (1999). J. Am. Oil Chem. Soc. 76, 669-676.

Vand, V. \& Bell, I. P. (1951). Acta Cryst. 4, 465-469.
Wille, R. L. \& Lutton, E. S. (1966). J. Am. Oil Chem. Soc. 43, 491496.

Yano, J., Ueno, S., Sato, K., Arishima, T., Sagi, N., Kaneko, F. \& Kobayashi, M. (1993). J. Phys. Chem. 97, 12967-12973.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: DR5011). Services for accessing these data are described at the back of the journal.

